此外,社交图谱还可以包括设备MAC地址、IP等许多节点和关系类型。想要在社交图谱中完全隐形可是极其困难的。
如果真的有用户能够隐藏自己的行踪,会在社交图谱中形成孤立点或子图,这也会说明一些问题,这样的用户在准入环节就有可能被风险模型拒绝了。
追债环节:如何用大数据实现高效追债?
好了,假设我们已经知道老赖住哪、在哪上班,光靠电话提醒可能没法获得很好的追债效果。这时候,就需要追债人出马去找老赖当面动之以情、晓之以理了。
可是,金融机构的贷款业务通常是面向全国的,很难在各地都安排专门的追债员工,而打飞的、高铁千里迢迢去要债也是划不来的。
针对这种需求,国内已经有了好几个追债平台,提供类似滴滴出行一样的服务。金融机构将债务信息(如同滴滴出行的发布行程)发布到平台,由平台基于数据分析调度安排当地最匹配债务特点的追债公司(如同滴滴出行的快车)进行欠款追讨,这解决了金融机构找不到合适追债公司、追债公司没有足够业务的痛点。
最后,友情提醒一句:普惠金融时代,虽然贷款很方便,但还是要理性消费,注意按时还款,维护良好的信用记录。您可以在自己的手机上设定一列闹钟提醒各种还款日,这样能最大化利用免息期,也不会造成逾期。